\qquad

Problem 1 - Graphing a simple inequality

In this problem, you will explore and graph a simple inequality: $x \geq 4$. Press PRGM to access the Program menu and choose the LINEQUA program.

Enter the left side of the inequality, \mathbf{X}, and press ENTER.

Then enter the right side of the inequality, 4, and press ENTER.

Select an inequality symbol. Press 2 to choose \geq.

Choose 1:View Table to see a table of values.

In the table, the first column \mathbf{X} shows the values of the variable, x. The second column, labeled Y1, shows the value of the left side for each x-value. The third column, labeled Y2, shows the value of the right side for each x-value.

1. Describe the numbers in the Y 1 column. How do they compare to the x-values? Explain.
2. Describe the numbers in the Y2 column. Are they affected by the x-values? Explain.

Now look at the fourth column, labeled \mathbf{Y}. Each entry in this column is either a 1 or a 0 . Examine this column. (Note: to scroll up or down, you will need to return to the \mathbf{X} column, scroll, then return to the Y3 column.)
3. a. For what x-values is there a 1 in the Y_{3} column?
b. Substitute one of these x-values into $x \geq 4$. Is the inequality true for this value of x ?
4. a. For what x-values is there a 0 in the Y 3 column?
b. Substitute one of these x-values into $x \geq 4$. Is the inequality true for this value of x ?

Press ENTER to exit the table，then press ENTER again to select 1：Another Ineq．This time enter the inequality $\boldsymbol{x}<\mathbf{- 2}$ ．

Linear Inequalities

Examples

The following examples show how to sketch the graph of an inequality on paper.
 the inequality. Since x is less than 5 , shade to the left of the circle.

The closed circle at 2 means that $x=2$ is a solution to the inequality. Since w is greater than or equal to 5 ,
 shade to the right of the circle.
9. Graph each inequality using your graphing calculator. Sketch the graphs here.
a. $a>5$

c. $z \geq-2$

b. $b<-2$

d. $y \leq 0$

Problem 2 - Solving inequalities using addition and subtraction

Equivalent inequalities are inequalities with the same solutions. For example, $x-3>5$ and $x>8$ are equivalent inequalities. You can add or subtract the same number from both sides of an inequality without affecting the solutions, just as you can do with equations.

Examples

$$
\begin{aligned}
x-3 & >5 \\
x-3+3 & >5+3 \\
x & >8
\end{aligned}
$$

$$
\begin{aligned}
x+6 & \leq 10 \\
x+6-6 & \leq 10-6 \\
x & \leq 4
\end{aligned}
$$

Linear Inequalities

You can use your calculator to check that two inequalities are equivalent. To see that $x-3>5$ and $x>8$ are equivalent, run the LINEQUA program. Enter the inequality $x-3>5$.

Choose Compare Ineq. to compare this inequality to another.

Enter $x>8$. The calculator displays the graphs of $x-3>5$ and $x>8$ on the same screen. The graphs are the same, so the inequalities are equivalent.

Caution: In some graphs, the open circle will appear to be filled in. This is because of the size of the pixels on the graph screen. For this reason, a "closed circle" is shown as a cross, and an "open circle" as a dot.

10. Solve each inequality. Use your calculator to compare the original inequality with the solution. Then sketch the graph of the solution.
a. $f-5 \geq 2$

c. $u+1 \leq 5$

e. $-5>h-1$

b. $-4>g-2$

d. $1<8+v$

f. $-5 \leq 1+t$

Problem 3 - Solving inequalities using multiplication and division
Use your calculator to compare the following sets of graphs.
11. a. Are $\frac{x}{5} \leq-1$ and $x \leq-5$ equivalent inequalities? Explain.
b. Can you multiply both sides of an inequality by 5 without changing its solutions?
12. a. Are $4 x>8$ and $x>2$ equivalent inequalities? Explain.
b. Can you divide both sides of an inequality by 4 without changing its solutions?

Linear Inequalities

13. a. Are $-x>4$ and $x>-4$ equivalent inequalities? Explain.
b. Can you multiply both sides of an inequality by -1 without changing its solutions?
14. Are $-x>4$ and $x<-4$ equivalent inequalities? Explain.
15. Compare graphs to find the inequality symbol that makes each pair of inequalities equivalent.
a. $\frac{v}{-4} \geq 2$
$v \ldots-8$
b. $-\frac{d}{3}<-3$
d \qquad 9
c. $-2 h>-2$ \qquad 1
d. $-5 r \leq 10$ \qquad
16. Complete the statement: If you multiply or both sides of an inequality by a negative number, you must \qquad the inequality sign to get an equivalent inequality.

To solve an inequality using multiplication or division, multiply or divide both sides of the inequality by the same number. However, if you multiply or divide both sides by a negative number, you must reverse the inequality symbol to obtain an equivalent inequality.
17. Solve each inequality. Use your graphing calculator to compare the original inequality with the solution. Then sketch its graph.
a. $\frac{C}{4} \geq 1$

b. $2<-\frac{d}{4}$

c. $3 w \leq-9$
d. $20>-5 x$

e. $18 d<-12$
f. $-\frac{5}{7} g>-5$

